๋ณธ๋ฌธ ๋ฐ”๋กœ๊ฐ€๊ธฐ
728x90
๋ฐ˜์‘ํ˜•

Nerf4

Expressive Body Capture: 3D Hands, Face, and Body from a Single Image SMPL-X๋ž€? : ๋‹จ์ผ ์ด๋ฏธ์ง€๋กœ๋ถ€ํ„ฐ, ์‹ ์ฒด๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ์†๊ณผ ์–ผ๊ตด์„ ํ†ตํ•ฉ์ ์œผ๋กœ 3D ํ˜•ํƒœ์˜ ์‹ ์ฒด๋กœ ํ‘œํ˜„ํ•˜๋Š” ๋ชจ๋ธ ์ขŒ: SMPL, ์ค‘๊ฐ„: SMPL+H, ์šฐ: SMPL-X 0. ABSTRACT : 3D ์Šค์บ”์„ ์‚ฌ์šฉํ•˜์—ฌ ์ธ๊ฐ„์˜ ๋ชธ์ฒด์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ํ†ตํ•ฉ๋œ 3D ๋ชจ๋ธ์ธ SMPL-X๋ฅผ ํ›ˆ๋ จ : SMPL์„ ํ™•์žฅํ•ด์„œ ์†๊ณผ ํ‘œ์ •๊นŒ์ง€ ๊ตฌํ˜„ํ•˜๊ณ ์ž ํ•จ : SMPL-X๋Š” ์–ผ๊ตด, ์†, ๋ชฉ, ์‹ ์ฒด ๋“ฑ ๋‹ค์–‘ํ•œ ์ธ์ฒด ํ˜•ํƒœ์™€ ์ž์„ธ๋ฅผ ํฌํ•จํ•˜๋Š” ๋งŽ์€ ๋งค๊ฐœ๋ณ€์ˆ˜๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋Š”๋ฐ, ์ด๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ์ถ”์ •ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ฐ ๋งค๊ฐœ๋ณ€์ˆ˜์— ๋Œ€ํ•œ ์ด๋ฏธ์ง€ ์ •๋ณด์™€ ๊ด€์ ˆ ์ •๋ณด๋ฅผ ๊ฒฐํ•ฉํ•ด์„œ ์ตœ์ ํ™”๋ฅผ ์ˆ˜ํ–‰ํ•ด์•ผ ํ•œ๋‹ค๋Š” ๋ฌธ์ œ์  ์กด์žฌ : ๋”ฐ๋ผ์„œ ๊ธฐ์กด SMPLify ์•Œ๊ณ ๋ฆฌ์ฆ˜(2D์—์„œ ๊ด€์ ˆ์ •๋ณด ์ถ”์ถœํ•ด์„œ ํ•™์Šต์‹œํ‚ค๋Š”)์„ ํ™œ์šฉํ•ด์„œ SMPL-X ๋ชจ๋ธ์„ ์ตœ์ ํ™”ํ•ด์„œ ์ ํ•ฉ์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์„ ์ œ.. 2023. 8. 4.
[2์ฃผ์ฐจ] 3D Generation Model Github ํƒ์ƒ‰ ๐Ÿ’ก 2์ฃผ์ฐจ ๊ณผ์ œ: 3D ์ƒ์„ฑํ•˜๋Š” ๋ชจ๋ธ ๊นƒํ—™ → ๋งŒ์•ฝ ํ•™์Šต์ด ํ•„์š”ํ•œ ๋ชจ๋ธ์ด๋ฉด ์–ด๋–ค ๋ฐ์ดํ„ฐ๊ณ , ๋ฐ์ดํ„ฐ AIํ—ˆ๋ธŒ๊ฐ™์€ ๋ฐ ์žˆ๋Š”์ง€ 1. CIPS-3D (21๋…„๋„ 10์›”) ์ด๋ฏธ์ง€๋ฅผ 3Dํ™” ์‹œํ‚ค๋ ค๊ณ  ํ•˜๋Š”, ์ €๋ฒˆ์— ์˜๊ฒฌ ๋‚˜์™”๋˜ ์˜ํ™” ํฌ์Šคํ„ฐ ํ˜น์€, ํ•ด๋ฆฌํฌํ„ฐ ์‹ ๋ฌธ?, ๊ทธ๋ฆผ ๋ช…ํ™” ๋“ฑ์ด ๊ฐ€๋Šฅํ•  ์ˆ˜๋„ ์žˆ์ง€ ์•Š์„๊นŒ ๐Ÿ’ป https://github.com/PeterouZh/CIPS-3D ๐Ÿ“š https://arxiv.org/abs/2110.09788 ๐Ÿงช https://huggingface.co/spaces/hysts/Shap-E ํŠน์ง• : NeRF ๊ธฐ๋ฐ˜ : ํ•œ๊ณ„์ ์€ NeRF ๋งˆ๋ƒฅ ์•ž์—์„œ๋งŒ ๋น™๋น™๋Œ€๋Š” ๊ฒƒ๋งŒ ๊ฐ€๋Šฅ → ์šฐ๋ฆฌ๊ฐ€ ์–ด๋–ค ์ฃผ์ œ๋กœ ํ• ๊ฑฐ๋ƒ์— ๋”ฐ๋ผ์„œ choice ๋  ์ˆ˜๋„ ์•ˆ๋  ์ˆ˜๋„ : ๋ฐ์ดํ„ฐ์…‹: ์ด๋ฏธ์ง€…? 2. FastGANFit (21๋…„.. 2023. 7. 17.
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis ๐Ÿ’ก 0. Abstract ์šฐ๋ฆฌ๋Š” ๋“œ๋ฌธ ์ž…๋ ฅ ๋ทฐ ์„ธํŠธ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์—ฐ์†์ ์ธ ๋ถ€ํ”ผ ์žฅ๋ฉด ํ•จ์ˆ˜๋ฅผ ์ตœ์ ํ™”ํ•˜์—ฌ ๋ณต์žกํ•œ ์žฅ๋ฉด์˜ ์ƒˆ๋กœ์šด ์‹œ์ ์„ ํ•ฉ์„ฑํ•˜๋Š” ์ตœ์ฒจ๋‹จ ๊ฒฐ๊ณผ๋ฅผ ๋‹ฌ์„ฑํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์šฐ๋ฆฌ์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์™„์ „ํžˆ ์—ฐ๊ฒฐ๋œ (๋น„์„ ํ˜•) ์‹ฌ์ธต ๋„คํŠธ์›Œํฌ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์žฅ๋ฉด์„ ํ‘œํ˜„ํ•˜๋ฉฐ, ์ž…๋ ฅ์€ ๋‹จ์ผ ์—ฐ์†์ ์ธ 5D ์ขŒํ‘œ (๊ณต๊ฐ„ ์œ„์น˜ (x, y, z) ๋ฐ ์‹œ์ฒญ ๋ฐฉํ–ฅ (θ, φ))์ด๊ณ  ์ถœ๋ ฅ์€ ํ•ด๋‹น ๊ณต๊ฐ„ ์œ„์น˜์—์„œ์˜ ๋ถ€ํ”ผ ๋ฐ€๋„์™€ ์‹œ์ ์— ์˜์กดํ•˜๋Š” ๋ฐฉ์ถœ ๋ž˜๋””์–ธ์Šค์ž…๋‹ˆ๋‹ค. ์šฐ๋ฆฌ๋Š” ์นด๋ฉ”๋ผ ๊ด‘์„ ์„ ๋”ฐ๋ผ 5D ์ขŒํ‘œ๋ฅผ ์ฟผ๋ฆฌํ•˜์—ฌ ๋ทฐ๋ฅผ ํ•ฉ์„ฑํ•˜๊ณ , ์ „ํ†ต์ ์ธ ๋ถ€ํ”ผ ๋ Œ๋”๋ง ๊ธฐ์ˆ ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ถœ๋ ฅ ์ƒ‰์ƒ๊ณผ ๋ฐ€๋„๋ฅผ ์ด๋ฏธ์ง€๋กœ ํˆฌ์˜ํ•ฉ๋‹ˆ๋‹ค. ๋ถ€ํ”ผ ๋ Œ๋”๋ง์€ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ๋ฏธ๋ถ„ ๊ฐ€๋Šฅํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ์šฐ๋ฆฌ์˜ ํ‘œํ˜„์„ ์ตœ์ ํ™”ํ•˜๊ธฐ ์œ„ํ•ด ํ•„์š”ํ•œ ์œ ์ผํ•œ ์ž…๋ ฅ์€ ์•Œ๋ ค์ง„ ์นด๋ฉ”๋ผ ํฌ์ฆˆ๋ฅผ ๊ฐ€์ง„ ์ด.. 2023. 7. 13.
[1์ฃผ์ฐจ] NeRF: Representing Scenes asNeural Radiance Fields for View Synthesis ๐Ÿ’ก 0. Abstract ์šฐ๋ฆฌ๋Š” ๋“œ๋ฌธ ์ž…๋ ฅ ๋ทฐ ์„ธํŠธ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์—ฐ์†์ ์ธ ๋ถ€ํ”ผ ์žฅ๋ฉด ํ•จ์ˆ˜๋ฅผ ์ตœ์ ํ™”ํ•˜์—ฌ ๋ณต์žกํ•œ ์žฅ๋ฉด์˜ ์ƒˆ๋กœ์šด ์‹œ์ ์„ ํ•ฉ์„ฑํ•˜๋Š” ์ตœ์ฒจ๋‹จ ๊ฒฐ๊ณผ๋ฅผ ๋‹ฌ์„ฑํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์šฐ๋ฆฌ์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์™„์ „ํžˆ ์—ฐ๊ฒฐ๋œ (๋น„์„ ํ˜•) ์‹ฌ์ธต ๋„คํŠธ์›Œํฌ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์žฅ๋ฉด์„ ํ‘œํ˜„ํ•˜๋ฉฐ, ์ž…๋ ฅ์€ ๋‹จ์ผ ์—ฐ์†์ ์ธ 5D ์ขŒํ‘œ (๊ณต๊ฐ„ ์œ„์น˜ (x, y, z) ๋ฐ ์‹œ์ฒญ ๋ฐฉํ–ฅ (θ, φ))์ด๊ณ  ์ถœ๋ ฅ์€ ํ•ด๋‹น ๊ณต๊ฐ„ ์œ„์น˜์—์„œ์˜ ๋ถ€ํ”ผ ๋ฐ€๋„์™€ ์‹œ์ ์— ์˜์กดํ•˜๋Š” ๋ฐฉ์ถœ ๋ž˜๋””์–ธ์Šค์ž…๋‹ˆ๋‹ค. ์šฐ๋ฆฌ๋Š” ์นด๋ฉ”๋ผ ๊ด‘์„ ์„ ๋”ฐ๋ผ 5D ์ขŒํ‘œ๋ฅผ ์ฟผ๋ฆฌํ•˜์—ฌ ๋ทฐ๋ฅผ ํ•ฉ์„ฑํ•˜๊ณ , ์ „ํ†ต์ ์ธ ๋ถ€ํ”ผ ๋ Œ๋”๋ง ๊ธฐ์ˆ ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ถœ๋ ฅ ์ƒ‰์ƒ๊ณผ ๋ฐ€๋„๋ฅผ ์ด๋ฏธ์ง€๋กœ ํˆฌ์˜ํ•ฉ๋‹ˆ๋‹ค. ๋ถ€ํ”ผ ๋ Œ๋”๋ง์€ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ๋ฏธ๋ถ„ ๊ฐ€๋Šฅํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ์šฐ๋ฆฌ์˜ ํ‘œํ˜„์„ ์ตœ์ ํ™”ํ•˜๊ธฐ ์œ„ํ•ด ํ•„์š”ํ•œ ์œ ์ผํ•œ ์ž…๋ ฅ์€ ์•Œ๋ ค์ง„ ์นด๋ฉ”๋ผ ํฌ์ฆˆ๋ฅผ ๊ฐ€์ง„ ์ด.. 2023. 7. 13.
728x90
๋ฐ˜์‘ํ˜•