๋ณธ๋ฌธ ๋ฐ”๋กœ๊ฐ€๊ธฐ
728x90
๋ฐ˜์‘ํ˜•

generative model3

cGAN/Pix2Pix 1. GAN 2. cGAN ์–ด๋–ค ์ˆซ์ž๋ฅผ ๋งŒ๋“ค์–ด๋‚ผ์ง€์— ๋Œ€ํ•œ ์ •๋ณด๋ฅผ ๋„ฃ์–ด์ฃผ๋Š” ๊ฒƒ(์–ด๋–ค ํด๋ž˜์Šค์— ํ•ด๋‹นํ•˜๋Š”์ง€์— ๋Œ€ํ•œ ์ •๋ณด) ex) 7์„ ๋งŒ๋“ค๊ณ ์ž ํ•œ๋‹ค๋ฉด condition vector์— 7์„ ๋„ฃ์–ด์ฃผ๊ณ , z(noise)์—๋Š” ๋žœ๋คํ•˜๊ฒŒ ์ƒ˜ํ”Œ๋งํ•ด์„œ 7์ด๋ผ๋Š” ์˜๋ฏธ๋ฅผ ๊ฐ€์ง€๋Š” ๋žœ๋คํ•œ ํ˜•ํƒœ๋ฅผ ๋งŒ๋“ค์–ด์คŒ 3. Pix2Pix image to image translation : ์ด๋ฏธ์ง€์˜ ํŠน์ • ์–‘์ƒ์„ ๋‹ค๋ฅธ ์–‘์ƒ์œผ๋กœ ๋ฐ”๊ฟ”์ฃผ๋Š” ๊ฒƒ์„ ์˜๋ฏธ ex) ์†๊ทธ๋ฆผ → ์‹ค์ œ ์‚ฌ์ง„์œผ๋กœ translation ์ด๋ฏธ์ง€ ์ž์ฒด๋ฅผ condition์œผ๋กœ ๋ฐ›์•„๋ฒ„๋ฆผ (์ด๋ฏธ์ง€ ์ž์ฒด๊ฐ€ ์ •๋ณด๊ฐ€ ๋˜๋Š” ๊ฒƒ์ž„) ์ฆ‰, ์ด๋ฏธ์ง€๊ฐ€ ๋“ค์–ด์™”์„ ๋•Œ, ๊ฑฐ๊ธฐ์— ๋ถ€ํ•ฉํ•˜๋Š” output์˜ ํ˜•ํƒœ๋กœ ๋งŒ๋“ค์–ด์คŒ noise vector z๋ฅผ ์•ˆ์”€ pixel ์„ ์ž…๋ ฅ์œผ๋กœ ๋ฐ›์•„ pixel์„ ์˜ˆ์ธกํ•จ (์ด๋ฏธ์ง€๋ฅผ ์ด๋ฏธ.. 2023. 7. 7.
GAN: Generative Adversarial Nets 0. Abstract ๋ณธ๋ฌธ We propose a new framework for estimating generative models via an adversarial process, in which we simultaneously train two models: a generative model G that captures the data distribution, and a discriminative model D that estimates the probability that a sample came from the training data rather than G. The training procedure for G is to maximize the probability of D making a m.. 2023. 7. 6.
CycleGAN 0. Abstract Figure 1: Given any two unordered image collections X and Y , our algorithm learns to automatically “translate” an image from one into the other and vice versa: (left) Monet paintings and landscape photos from Flickr; (center) zebras and horses from ImageNet; (right) summer and winter Yosemite photos from Flickr. Example application (bottom): using a collection of paintings of famous.. 2023. 7. 5.
728x90
๋ฐ˜์‘ํ˜•